Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 82 additions & 1 deletion sentry_sdk/integrations/openai.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
from sentry_sdk.ai.utils import (
set_data_normalized,
normalize_message_roles,
parse_data_uri,
truncate_and_annotate_messages,
)
from sentry_sdk.consts import SPANDATA
Expand All @@ -18,7 +19,7 @@
safe_serialize,
)

from typing import TYPE_CHECKING
from typing import TYPE_CHECKING, Dict

if TYPE_CHECKING:
from typing import Any, Iterable, List, Optional, Callable, AsyncIterator, Iterator
Expand Down Expand Up @@ -180,6 +181,84 @@ def _calculate_token_usage(
)


def _convert_message_parts(messages: "List[Dict[str, Any]]") -> "List[Dict[str, Any]]":
"""
Convert the message parts from OpenAI format to the `gen_ai.request.messages` format.
e.g:
{
"role": "user",
"content": [
{
"text": "How many ponies do you see in the image?",
"type": "text"
},
{
"type": "image_url",
"image_url": {
"url": "data:image/jpeg;base64,...",
"detail": "high"
}
}
]
}
becomes:
{
"role": "user",
"content": [
{
"text": "How many ponies do you see in the image?",
"type": "text"
},
{
"type": "blob",
"modality": "image",
"mime_type": "image/jpeg",
"content": "data:image/jpeg;base64,..."
}
]
}
"""

def _map_item(item: "Dict[str, Any]") -> "Dict[str, Any]":
if not isinstance(item, dict):
return item

if item.get("type") == "image_url":
image_url = item.get("image_url") or {}
url = image_url.get("url", "")
Comment on lines +226 to +228
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Bug: The code will raise an AttributeError if item.get("image_url") returns a string, because the or {} fallback is not triggered and .get() is called on a string.
Severity: HIGH

Suggested Fix

Add a check to ensure image_url is a dictionary before calling .get() on it. A similar pattern is used elsewhere in the codebase: url = image_url.get("url", "") if isinstance(image_url, dict) else str(image_url). This will handle both dictionary and string formats gracefully.

Prompt for AI Agent
Review the code at the location below. A potential bug has been identified by an AI
agent.
Verify if this is a real issue. If it is, propose a fix; if not, explain why it's not
valid.

Location: sentry_sdk/integrations/openai.py#L226-L228

Potential issue: In the `_convert_message_parts` function, the code processes message
parts to extract an `image_url`. The line `image_url = item.get("image_url") or {}` does
not correctly handle cases where the value of `image_url` is a string instead of a
dictionary. If a string is provided (e.g., `{"type": "image_url", "image_url":
"https://..."}`), the subsequent call to `image_url.get("url", "")` will raise an
`AttributeError`, as strings do not have a `.get()` method. This causes an unhandled
exception within the Sentry integration, preventing the span from being processed
correctly.

Did we get this right? 👍 / 👎 to inform future reviews.

if url.startswith("data:"):
try:
mime_type, content = parse_data_uri(url)
return {
"type": "blob",
"modality": "image",
"mime_type": mime_type,
"content": content,
}
except ValueError:
# If parsing fails, return as URI
return {
"type": "uri",
"modality": "image",
"uri": url,
}
else:
return {
"type": "uri",
"modality": "image",
"uri": url,
}
return item

for message in messages:
if not isinstance(message, dict):
continue
content = message.get("content")
if isinstance(content, list):
message["content"] = [_map_item(item) for item in content]
return messages


def _set_input_data(
span: "Span",
kwargs: "dict[str, Any]",
Expand All @@ -201,6 +280,8 @@ def _set_input_data(
and integration.include_prompts
):
normalized_messages = normalize_message_roles(messages)
normalized_messages = _convert_message_parts(normalized_messages)

scope = sentry_sdk.get_current_scope()
messages_data = truncate_and_annotate_messages(normalized_messages, span, scope)
if messages_data is not None:
Expand Down
52 changes: 40 additions & 12 deletions sentry_sdk/integrations/openai_agents/spans/invoke_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,14 +3,19 @@
get_start_span_function,
set_data_normalized,
normalize_message_roles,
normalize_message_role,
truncate_and_annotate_messages,
)
from sentry_sdk.consts import OP, SPANDATA
from sentry_sdk.scope import should_send_default_pii
from sentry_sdk.utils import safe_serialize

from ..consts import SPAN_ORIGIN
from ..utils import _set_agent_data, _set_usage_data
from ..utils import (
_set_agent_data,
_set_usage_data,
_transform_openai_agents_message_content,
)

from typing import TYPE_CHECKING

Expand Down Expand Up @@ -49,17 +54,40 @@ def invoke_agent_span(

original_input = kwargs.get("original_input")
if original_input is not None:
message = (
original_input
if isinstance(original_input, str)
else safe_serialize(original_input)
)
messages.append(
{
"content": [{"text": message, "type": "text"}],
"role": "user",
}
)
if isinstance(original_input, str):
# String input: wrap in text block
messages.append(
{
"content": [{"text": original_input, "type": "text"}],
"role": "user",
}
)
elif isinstance(original_input, list) and len(original_input) > 0:
# Check if list contains message objects (with type="message")
# or content parts (input_text, input_image, etc.)
first_item = original_input[0]
if isinstance(first_item, dict) and first_item.get("type") == "message":
# List of message objects - process each individually
for msg in original_input:
if isinstance(msg, dict) and msg.get("type") == "message":
role = normalize_message_role(msg.get("role", "user"))
content = msg.get("content")
transformed = _transform_openai_agents_message_content(
content
)
if isinstance(transformed, str):
transformed = [{"text": transformed, "type": "text"}]
elif not isinstance(transformed, list):
transformed = [
{"text": str(transformed), "type": "text"}
]
messages.append({"content": transformed, "role": role})
else:
# List of content parts - transform and wrap as user message
content = _transform_openai_agents_message_content(original_input)
if not isinstance(content, list):
content = [{"text": str(content), "type": "text"}]
messages.append({"content": content, "role": "user"})
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Non-dict content items produce invalid message structure

Low Severity

When original_input is a list containing non-dict items (like strings or numbers), _transform_openai_agents_message_content returns them unchanged. The calling code only wraps the result in text format when it's NOT a list, so lists with non-dict items like ["hello", "world"] become invalid content structures instead of proper [{"text": "hello", "type": "text"}, ...] format. The old code used safe_serialize() to handle any input type safely, producing valid message content for all cases.

Additional Locations (1)

Fix in Cursor Fix in Web


if len(messages) > 0:
normalized_messages = normalize_message_roles(messages)
Expand Down
136 changes: 133 additions & 3 deletions sentry_sdk/integrations/openai_agents/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
from sentry_sdk.ai.utils import (
GEN_AI_ALLOWED_MESSAGE_ROLES,
normalize_message_roles,
parse_data_uri,
set_data_normalized,
normalize_message_role,
truncate_and_annotate_messages,
Expand All @@ -27,6 +28,133 @@
raise DidNotEnable("OpenAI Agents not installed")


def _transform_openai_agents_content_part(
content_part: "dict[str, Any]",
) -> "dict[str, Any]":
"""
Transform an OpenAI Agents content part to Sentry-compatible format.

Handles multimodal content (images, audio, files) by converting them
to the standardized format:
- base64 encoded data -> type: "blob"
- URL references -> type: "uri"
- file_id references -> type: "file"
"""
if not isinstance(content_part, dict):
return content_part

part_type = content_part.get("type")

# Handle input_text (OpenAI Agents SDK text format) -> normalize to standard text format
if part_type == "input_text":
return {
"type": "text",
"text": content_part.get("text", ""),
}

# Handle image_url (OpenAI vision format) and input_image (OpenAI Agents SDK format)
if part_type in ("image_url", "input_image"):
# Get URL from either format
if part_type == "image_url":
image_url = content_part.get("image_url") or {}
url = (
image_url.get("url", "")
if isinstance(image_url, dict)
else str(image_url)
)
else:
# input_image format has image_url directly
url = content_part.get("image_url") or ""

if url.startswith("data:"):
try:
mime_type, content = parse_data_uri(url)
return {
"type": "blob",
"modality": "image",
"mime_type": mime_type,
"content": content,
}
except ValueError:
# If parsing fails, return as URI
return {
"type": "uri",
"modality": "image",
"mime_type": "",
"uri": url,
}
else:
return {
"type": "uri",
"modality": "image",
"mime_type": "",
"uri": url,
}

# Handle input_audio (OpenAI audio input format)
if part_type == "input_audio":
input_audio = content_part.get("input_audio") or {}
if isinstance(input_audio, dict):
audio_format = input_audio.get("format", "")
mime_type = f"audio/{audio_format}" if audio_format else ""
return {
"type": "blob",
"modality": "audio",
"mime_type": mime_type,
"content": input_audio.get("data", ""),
}
else:
return content_part

# Handle image_file (Assistants API file-based images)
if part_type == "image_file":
image_file = content_part.get("image_file") or {}
if isinstance(image_file, dict):
return {
"type": "file",
"modality": "image",
"mime_type": "",
"file_id": image_file.get("file_id", ""),
}
else:
return content_part

# Handle file (document attachments)
if part_type == "file":
file_data = content_part.get("file") or {}
if isinstance(file_data, dict):
return {
"type": "file",
"modality": "document",
"mime_type": "",
"file_id": file_data.get("file_id", ""),
}
else:
return content_part

return content_part


def _transform_openai_agents_message_content(content: "Any") -> "Any":
"""
Transform OpenAI Agents message content, handling both string content and
list of content parts.
"""
if isinstance(content, str):
return content

if isinstance(content, (list, tuple)):
transformed = []
for item in content:
if isinstance(item, dict):
transformed.append(_transform_openai_agents_content_part(item))
else:
transformed.append(item)
return transformed

return content


def _capture_exception(exc: "Any") -> None:
set_span_errored()

Expand Down Expand Up @@ -128,13 +256,15 @@ def _set_input_data(
if "role" in message:
normalized_role = normalize_message_role(message.get("role"))
content = message.get("content")
# Transform content to handle multimodal data (images, audio, files)
transformed_content = _transform_openai_agents_message_content(content)
request_messages.append(
{
"role": normalized_role,
"content": (
[{"type": "text", "text": content}]
if isinstance(content, str)
else content
[{"type": "text", "text": transformed_content}]
if isinstance(transformed_content, str)
else transformed_content
),
}
)
Expand Down
Loading
Loading