Skip to content
/ lcda Public

❗ This is a read-only mirror of the CRAN R package repository. lcda — Latent Class Discriminant Analysis

Notifications You must be signed in to change notification settings

cran/lcda

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

lcda

CRAN status CRAN downloads R-CMD-check pkgdown

Latent class discriminant analysis for categorical data, including local and common-components variants.

Installation

CRAN:

install.packages("lcda")

Development version:

remotes::install_github("mchlbckr/lcda")

Usage

library(lcda)

# See ?lcda, ?cclcda, and ?cclcda2 for examples

Overview

Key functions:

  • lcda(): fits separate latent class models per class.
  • cclcda(): fits a common-components latent class model with class-specific mixing proportions.
  • cclcda2(): fits a common-components model with class-conditional mixing proportions.

Data requirements:

  • Manifest variables must be integer-coded and start at 1.
  • Grouping labels must be integer-coded and start at 1.

Documentation

The package includes a vignette with a worked example:

vignette("lcda")

Reference

Bücker, M., Szepannek, G., Weihs, C. (2010). Local Classification of Discrete Variables by Latent Class Models. In: Locarek-Junge, H., Weihs, C. (eds) Classification as a Tool for Research. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10745-0_13

Bücker, M. (2008). Lokale Diskrimination diskreter Daten. Diplomarbeit, Fakultaet Statistik, TU Dortmund.

About

❗ This is a read-only mirror of the CRAN R package repository. lcda — Latent Class Discriminant Analysis

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages