PartiNet is a three-stage pipeline for automated particle picking in cryo-EM micrographs, combining advanced denoising with state-of-the-art deep learning detection.
Installation and Usage can be found at our Documentation
Use our pretrained model at Model Weights
- 🧹 Heuristic denoising for improved signal-to-noise ratio
- 🎯 Dynamic deep learning particle detection
- ⚡ Multi-GPU support for faster processing
- 🔄 Seamless integration with cryoSPARC and RELION workflows
- 📊 Confidence-based particle filtering
- 🖼️ Visual detection validation
Before starting, ensure you have:
- Motion-corrected micrographs
- GPU access (recommended)
- PartiNet installation (see Installation section)
git clone git@github.com:WEHI-ResearchComputing/PartiNet.git
cd PartiNetAlternatively, use our containers:
# Singularity/Apptainer
apptainer exec --nv --no-home \
-B /path/to/your/data:/data oras://ghcr.io/wehi-researchcomputing/partinet:main-singularity \
partinet --help
# Docker
docker pull ghcr.io/wehi-researchcomputing/partinet:main
docker run --gpus all -v /path/to/your/data:/data \
ghcr.io/wehi-researchcomputing/partinet:main partinet --help
project_directory/
├── motion_corrected/ # 📁 Input micrographs
├── denoised/ # 🧹 Denoised outputs
├── exp/ # 🎯 Detection results
│ ├── labels/ # 📋 Coordinates
│ └── ... # 🖼️ Visualizations
└── partinet_particles.star # ⭐ Final output
partinet denoise \
--source /data/my_project/motion_corrected \
--project /data/my_projectpartinet detect \
--weight /path/to/model_weights.pt \
--source /data/partinet_picking/denoised \
--device 0,1,2,3 \
--project /data/partinet_pickingpartinet star \
--labels /data/my_project/exp/labels \
--images /data/my_project/denoised \
--output /data/my_project/partinet_particles.star \
--conf 0.1-
Denoised Micrographs (
denoised/*.png)- Cleaned micrographs with improved SNR
-
Detection Results (
exp/)labels/*.txt: Particle coordinates*.png: Visualization overlays
-
STAR File (
partinet_particles.star)- Ready for RELION processing
For detailed information about specific commands:
partinet --help
partinet <command> --helpAvailable commands:
denoise: Clean input micrographsdetect: Identify particlesstar: Generate STAR filestrain: Train custom models
-
GPU Issues
- Verify GPU availability:
nvidia-smi - Check CUDA installation
- Ensure proper device selection
- AMD and Intel GPUs are currently untested
- Verify GPU availability:
-
Path Issues
- Verify directory permissions
- Check mount points in container setups
- Ensure absolute paths are used
We welcome contributions! Please raise issues or initiate pull requests on this repo.
This project is licensed under the terms of MIT license.
If you use PartiNet in your research, please cite:
Citation information will be added upon publication
For issues and questions:
- Open an Issue
- Check existing Discussions