Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 56 additions & 3 deletions monai/losses/dice.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,6 @@

import warnings
from collections.abc import Callable, Sequence
from typing import Any

import numpy as np
import torch
Expand Down Expand Up @@ -239,11 +238,52 @@ class MaskedDiceLoss(DiceLoss):

"""

def __init__(self, *args: Any, **kwargs: Any) -> None:
def __init__(
self,
include_background: bool = True,
to_onehot_y: bool = False,
sigmoid: bool = False,
softmax: bool = False,
other_act: Callable | None = None,
squared_pred: bool = False,
jaccard: bool = False,
reduction: LossReduction | str = LossReduction.MEAN,
smooth_nr: float = 1e-5,
smooth_dr: float = 1e-5,
batch: bool = False,
weight: Sequence[float] | float | int | torch.Tensor | None = None,
soft_label: bool = False,
) -> None:
"""
Args follow :py:class:`monai.losses.DiceLoss`.
"""
super().__init__(*args, **kwargs)
if other_act is not None and not callable(other_act):
raise TypeError(f"other_act must be None or callable but is {type(other_act).__name__}.")
if sigmoid and softmax:
raise ValueError("Incompatible values: sigmoid=True and softmax=True.")
if other_act is not None and (sigmoid or softmax):
raise ValueError("Incompatible values: other_act is not None and sigmoid=True or softmax=True.")

self.pre_sigmoid = sigmoid
self.pre_softmax = softmax
self.pre_other_act = other_act

super().__init__(
include_background=include_background,
to_onehot_y=to_onehot_y,
sigmoid=False,
softmax=False,
other_act=None,
squared_pred=squared_pred,
jaccard=jaccard,
reduction=reduction,
smooth_nr=smooth_nr,
smooth_dr=smooth_dr,
batch=batch,
weight=weight,
soft_label=soft_label,
)

self.spatial_weighted = MaskedLoss(loss=super().forward)

def forward(self, input: torch.Tensor, target: torch.Tensor, mask: torch.Tensor | None = None) -> torch.Tensor:
Expand All @@ -253,6 +293,19 @@ def forward(self, input: torch.Tensor, target: torch.Tensor, mask: torch.Tensor
target: the shape should be BNH[WD].
mask: the shape should B1H[WD] or 11H[WD].
"""

if self.pre_sigmoid:
input = torch.sigmoid(input)

n_pred_ch = input.shape[1]
if self.pre_softmax:
if n_pred_ch == 1:
warnings.warn("single channel prediction, `softmax=True` ignored.", stacklevel=2)
else:
input = torch.softmax(input, 1)

if self.pre_other_act is not None:
input = self.pre_other_act(input)
return self.spatial_weighted(input=input, target=target, mask=mask) # type: ignore[no-any-return]


Expand Down
6 changes: 3 additions & 3 deletions tests/losses/test_masked_dice_loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
"target": torch.tensor([[[[1.0, 0.0], [1.0, 1.0]]]]),
"mask": torch.tensor([[[[0.0, 0.0], [1.0, 1.0]]]]),
},
0.500,
0.333333,
],
[ # shape: (2, 1, 2, 2), (2, 1, 2, 2)
{"include_background": True, "sigmoid": True, "smooth_nr": 1e-4, "smooth_dr": 1e-4},
Expand All @@ -36,7 +36,7 @@
"target": torch.tensor([[[[1.0, 1.0], [1.0, 1.0]]], [[[1.0, 0.0], [1.0, 0.0]]]]),
"mask": torch.tensor([[[[1.0, 1.0], [1.0, 1.0]]], [[[1.0, 1.0], [0.0, 0.0]]]]),
},
0.422969,
0.301128,
],
[ # shape: (2, 2, 3), (2, 1, 3)
{"include_background": False, "to_onehot_y": True, "smooth_nr": 0, "smooth_dr": 0},
Expand All @@ -54,7 +54,7 @@
"target": torch.tensor([[[1.0, 0.0, 0.0]], [[1.0, 1.0, 0.0]]]),
"mask": torch.tensor([[[1.0, 1.0, 0.0]]]),
},
0.47033,
0.579184,
],
[ # shape: (2, 2, 3), (2, 1, 3)
{
Expand Down
Loading