pip3 install git+https://github.com/carloalbertobarbano/AnatCL.git
import torch
from torchvision import transforms
from anatcl import AnatCL
model = AnatCL(descriptor="global", fold=0, pretrained=True)
model = model.to("cuda")
transform = transforms.Compose([
transforms.Lambda(lambda x: torch.from_numpy(x.copy()).float()),
transforms.Normalize(mean=0.0, std=1.0)
])
# Volumes should be 121x128x121 preprocessed with cat12 toolbox (vbm)
dataset = Dataset(transform=transform, ...)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False,
num_workers=8, persistent_workers=True)
model.eval()
for (image, label) in dataloader:
image = image.to("cuda")
output = model(image)
# Do something with the outputComing soon
Coming soon
If you find our models useful please do not forget to cite this work as
@article{barbano2026anatomical,
title = {Anatomical foundation models for brain MRIs},
journal = {Pattern Recognition Letters},
volume = {199},
pages = {178-184},
year = {2026},
issn = {0167-8655},
doi = {https://doi.org/10.1016/j.patrec.2025.11.028},
url = {https://www.sciencedirect.com/science/article/pii/S0167865525003848},
author = {Carlo Alberto Barbano and Matteo Brunello and Benoit Dufumier and Marco Grangetto},
}